Strong Convergence of a Modified Extragradient Method to the Minimum-Norm Solution of Variational Inequalities

نویسندگان

  • Yonghong Yao
  • Muhammad Aslam Noor
  • Yeong-Cheng Liou
  • Khalida Inayat Noor
چکیده

and Applied Analysis 3 2. Preliminaries Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a closed convex subset of H. It is well known that, for any u ∈ H, there exists a unique u0 ∈ C such that ‖u − u0‖ inf{‖u − x‖ : x ∈ C}. 2.1 We denote u0 by PCu, where PC is called the metric projection of H onto C. The metric projection PC ofH onto C has the following basic properties: i ‖PCx − PCy‖ ≤ ‖x − y‖ for all x, y ∈ H; ii 〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖ for every x, y ∈ H; iii 〈x − PCx, y − PCx〉 ≤ 0 for all x ∈ H, y ∈ C. We need the following lemma for proving our main results. Lemma 2.1 see 15 . Assume that {an} is a sequence of nonnegative real numbers such that an 1 ≤ ( 1 − γn ) an δn, 2.2 where {γn} is a sequence in 0, 1 and {δn} is a sequence such that 1 ∑∞ n 1 γn ∞; 2 lim supn→∞δn/γn ≤ 0 or ∑∞ n 1 |δn| < ∞. Then limn→∞an 0. 3. Main Result In this section we will state and prove our main result. Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be an αinverse-strongly monotone mapping. Suppose that VI C,A / ∅. For given x0 ∈ C arbitrarily, define a sequence {xn} iteratively by yn PC 1 − αn xn − λAxn , xn 1 PC ( yn − λAyn ) , n ≥ 0, 3.1 where {αn} is a sequence in 0, 1 and λ ∈ a, b ⊂ 0, 2α is a constant. Assume the following conditions are satisfied: C1 : limn→∞αn 0; C2 : ∑∞ n 1 αn ∞; C3 : limn→∞ αn 1/αn 1. Then the sequence {xn} generated by 3.1 converges strongly to PVI C,A 0 which is the minimumnorm element in VI C,A . 4 Abstract and Applied Analysis We will divide our detailed proofs into several conclusions. Proof. Take x∗ ∈ VI C,A . First we need to use the following facts: 1 x∗ PC x∗ − λAx∗ for all λ > 0; in particular, x∗ PC x∗ − λ 1 − αn Ax∗ PC αnx∗ 1 − αn x∗ − λAx∗ , ∀n ≥ 0; 3.2 2 I − λA is nonexpansive and for all x, y ∈ C ∥∥ I − λA x − I − λA y∥2 ≤ ∥x − y∥2 λ λ − 2α ∥Ax −Ay∥2. 3.3 From 3.1 , we have ∥yn − x∗ ∥∥ ‖PC 1 − αn xn − λAxn − PC αnx∗ 1 − αn x∗ − λAx∗ ‖ ≤ ‖αn −x∗ 1 − αn xn − λAxn − x∗ − λAx∗ ‖ ≤ αn‖x∗‖ 1 − αn ‖ I − λA xn − I − λA x∗‖ ≤ αn‖x∗‖ 1 − αn ‖xn − x∗‖. 3.4 Thus, ‖xn 1 − x∗‖ ∥PC ( yn − λAyn ) − PC x∗ − λAx∗ ∥∥ ≤ ∥yn − λAyn ) − x∗ − λAx∗ ∥∥ ≤ ∥yn − x∗ ∥∥ ≤ αn‖x∗‖ 1 − αn ‖xn − x∗‖ ≤ max{‖x∗‖, ‖x0 − x∗‖}. 3.5 Therefore, {xn} is bounded and so are {yn}, {Axn}, and {Ayn}. From 3.1 , we have ‖xn 1 − xn‖ ∥PC ( yn − λAyn ) − PC ( yn−1 − λAyn−1 )∥∥ ≤ ∥yn − λAyn ) − yn−1 − λAyn−1 )∥∥ ≤ ∥yn − yn−1 ∥∥ ‖PC 1 − αn xn − λAxn − PC 1 − αn−1 xn−1 − λAxn−1 ‖ ≤ ‖ 1 − αn I − λA xn − I − λA xn−1 − αn − αn−1 I − λA xn−1‖ ≤ 1 − αn ‖ I − λA xn − I − λA xn−1‖ |αn − αn−1|‖ I − λA xn−1‖ ≤ 1 − αn ‖xn − xn−1‖ |αn − αn−1|M, 3.6 Abstract and Applied Analysis 5 where M > 0 is a constant such that supn{‖ I − λA xn‖, ‖ I − λA xn‖ ‖ I − λA xn‖ 2‖xn − x∗‖ } ≤ M. Hence, by Lemma 2.1, we obtainand Applied Analysis 5 where M > 0 is a constant such that supn{‖ I − λA xn‖, ‖ I − λA xn‖ ‖ I − λA xn‖ 2‖xn − x∗‖ } ≤ M. Hence, by Lemma 2.1, we obtain lim n→∞ ‖xn 1 − xn‖ 0. 3.7 From 3.4 , 3.5 and the convexity of the norm, we deduce ‖xn 1 − x∗‖2 ≤ ‖αn −x∗ 1 − αn xn − λAxn − x∗ − λAx∗ ‖ ≤ αn‖x∗‖ 1 − αn ‖ I − λA xn − I − λA x∗‖2 ≤ αn‖x∗‖ 1 − αn [ ‖xn − x∗‖2 λ λ − 2α ‖Axn −Ax∗‖2 ] ≤ αn‖x∗‖ ‖xn − x∗‖2 1 − αn a b − 2α ‖Axn −Ax∗‖2. 3.8

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method

The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...

متن کامل

Strong convergence for variational inequalities and equilibrium problems and representations

We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...

متن کامل

A New Extragradient Method for Strongly Pseudomonotone Variational Inequalities

This paper proposes a new extragradient solution method for strongly pseudomonotone variational inequalities. A detailed analysis of the convergence of the iterative sequences and the range of application of the method is given. Mathematics Subject Classification (2010). 47J20, 49J40, 49M30.

متن کامل

Hybrid Iterative Scheme by a Relaxed Extragradient Method for Equilibrium Problems, a General System of Variational Inequalities and Fixed-Point Problems of a Countable Family of Nonexpansive Mappings

Based on the relaxed extragradient method and viscosity method, we introduce a new iterative method for finding a common element of solution of equilibrium problems, the solution set of a general system of variational inequalities, and the set of fixed points of a countable family of nonexpansive mappings in a real Hilbert space. Furthermore, we prove the strong convergence theorem of the studi...

متن کامل

The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space

We present a subgradient extragradient method for solving variational inequalities in Hilbert space. In addition, we propose a modified version of our algorithm that finds a solution of a variational inequality which is also a fixed point of a given nonexpansive mapping. We establish weak convergence theorems for both algorithms.

متن کامل

Coupling Extragradient Methods with Cq Methods for Equilibrium Points, Pseudomonotone Variational Inequalities and Fixed Points

In this paper, we suggest a hybrid method for finding a common element of the set of solution of an equilibrium problem, the set of solution of a pseudomonotone variational inequality problem and the set of common fixed points of an infinite family of nonexpansive mappings. The constructed iterative method combines two well-known methods: extragradient method and CQ method. We derive a necessar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014